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PREFACE
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communication systems studies warrants further publication and distribution by
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ABSTRACT SOZ35

The output frequency spectrum of a diode frequency converter, or mixer,
will contain sum and difference frequencies of the applied signal and local oscil-
lator and their harmonics. In addition, these newly created frequencies will beat
with each other and with the originally applied signals to create still more fre-
quencies, and the process continues indefinitely. Advance knowledge of the lo-
cation of the undesired frequencies is important to the design and performance
characteristics of the converter, and to the sensitivity andfiltering requirements
of the receiver system.

This paper presents the output power spectral density of the diode frequency
converter when subjected to deterministic, statistical, and mixed inputs by ap-
plication of the Wiener-Khintchine Theorem to the autocorrelation function of the
diode output current. The converter output autocorrelation function for the
general signal plus noise case and for particular signal inputs is presented in
terms of thediode conductance constants and the statistical moments of the input
signal.

All of the autocorrelation and power spectrafunctions developed in this paper
are expressed in series form to permit a useful analysis of the contributions of
the diode conductance constants to each term. From these spectral displays, the
optimum diode characteristic for efficient frequency conversion can be generated
and the filtering and power requirements of the converter determined.
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THE OUTPUT AUTOCORRELATION FUNCTION
AND POWER SPECTRAL DENSITY
OF A DIODE FREQUENCY CONVERTER

1. INTRODUCTION

Frequency conversion, or mixing, may be broadly defined as the conversion
of a signal from one frequency band to another by combining it with a local os-
cillator voltage in a non-linear device. In a microwave communications system
the frequency converter is utilized to convert the high-Irequency received signal
to a lower intermediate frequency where frequency selective operations such as
amplification or detection may be more readily accomplished.

The essential part of the frequency converter consists of a device whose
impedance to the high-frequency signal input is a non-linear function of the ap-
plied voltage. I the applied voltage includes the signal and a sinusoidal 'beating’,
or local oscillator, the output of the device will contain new frequencies gener-
ated by the non-linear impedance. The desired output frequency band, usually
the difference of the local oscillator and signal frequencies, is then chosen by a
suitable frequency selection or filtering network at the converter output.

The relatively recent extension of communications systems to the upper
microwave and lower millimeter wavelength portion of the electromagnetic
spectrum has produced an added importance on the techniques for achieving
frequency conversion. The extremely high frequencies involved prevent the use
of vacuum tubes as converters because of the losses produced from electron
transit-time effects. The point contact semiconductor diode, where electrode
spacing is on the order of atomic dimensions, has been found suitable as a non-
linear element in the microwave frequency range. With the utilization of very
small contact points and careful packaging and matching techniques, the semi-
conductor diode has proved superior to other methods of frequency conversion,
and it is now in general use in microwave systems.

In this paper the output spectra of a microwave diode frequency converter
subjected to deterministic and random input signals will be investigated. The
term 'frequency converter', rather than 'mixer’, is used here to stress the fact
that this analysis is not limited to devices which translate the high-frequency
input spectrum to a much lower intermediate frequency band, (say 30 or 100
Megacycles), but includes devices where the desired output spectrum may
occupy a frequency band close to that of the input spectrum. The term mixer
is usually associated with the former type of device, while the term frequency
converter more accurately describes the latter.

-




1.1 SCOPE OF STUDY

The output spectrum of the diode frequency converter before preselection or
filtering of the desired output frequencies will contain sum and difference fre-
quencies of the applied signals and their harmonics. In addition, these newly
created frequencies will beat with each other and with the originally applied
signals to create still more frequencies, and the process continues indefinitely.
Advance knowledge of the location of the undesired frequencies is important to
the design and performance characteristics of the converter, and to the sensi-
tivity and filtering requirements of the receiver system.

The output frequency spectrum of a converter subjected to an input signal
which possesses completely deterministic characteristics can be predicted by a
general analysis of the intermodulation products of the output current of the
device!. When the input signal is of a statistical or random nature, which is the
prevalent condition in communications systems, the output spectrum is not di-
rectly available and the methods of statistical communications theory must be
appealed to. The necessity of a statistica] approach arises because it is usually
impossible to specify the properties of the information bearing signal and the
equally important noise that is present to sufficient accuracy without recourse
to a probabilistic description of these processes.

This paper develops the output power spectral density of the diode frequency
converter subjected to deterministic, random, and mixed inputs by application
of the Wiener-Khintchinc Theorem to the autocorrelation function of the diode
output current. The general output autocorrelation function is presented in
terms of the diode conductance constants and the moments of the input signal.
The output statistics of the converter for particular inputs is also investigated
and their output spectra displayed.

The paper is divided into eight sections. In Section 2 the mathematical
preliminaries required for the analysis are summarized and results tabulated for
later reference. InSection 3, the output current for the diode is derived by a
Taylor Series analysis similar to Orloff '1s2. Section 4 derives the general output
autocorrelation function for the converter in terms of the statistical moments of
the input and the diode conductance constants.

In Section 5 the statistical properties of the signal plus noise input are dis-
cussed and the general output autocorrelation function for the signal plus noise

Kee, for example; Orloff, (REF, 8), and Tucker, (REF. 16). The Reference List is found on
page 90. :

Wrloff, (REF. 8, pp. 173-175).




input is derived. The final three sections present solutions for particular de-
terministic and random inputs to the converter. In Section 6 the output power
spectra for a cosine and a cosine plus narrowband noise input are presented.
In Sections 7 and 8, results for amplitude and angle modulated carrier inputs
are derived and their output spectra indicated.

Every attempt was made in this analysis to keep the resulting functions and
expressions in a form which would allow a minimum amount of manipulation to
obtain autocorrelation and power spectra directly. The basic approach guiding
the analysis was to reduce the general autocorrelation function for the converter
output current, R, (7), to a series of relatively simple functions of 7 so that the
resulting spectral contributions of each term were immediately available. This
reduction was found to be most readily accomplished by expressing R, (7) in
terms of the joint mixed moments of the input signal process, rather than in
terms of a Bessel function factorization as done by Middleton®, or in terms of
contour integrals of the input characteristic function, as done by Davenport and
Root!. Shutterly derives series expressions for the output autocorrelation of
the general non-linear device, but evaluation of his constants, requiring summa-
tion over five running integers, is unwieldy for all but the simplest of non-linear
devicesS.

The determination of the output statistics of the frequency converter when
subjected to a cosine plus narrowband Gaussian noise input is included because
it represents the most useful input for communications systems studies. As
described in Sections 7 and 8, this input can be used to represent both the ampli-
tude and the angle modulated cosine wave when subjected to a narrowband
Gaussian modulating voltage.

3(REF. 7, Section 5.1).
4(REF. 3, Section 13.3).
S(REF. 12, Egs. 38 and 66).




4

2. MATHEMATICAL PRELIMINARIES

This section summarizes some of the important mathematical and statistical
concepts which will be utilized in the analysis of the succeeding sections, and in-
dicates the nomenclature that will be followed in the text.

2.1 PROBABILITY DISTRIBUTIONS

The mathematical description of a random or stochastic process rests on
the representation of the random mechanism as a set or ensemble of possible
events possessing properties of statistical regularity. Consider a real, single
random variable, x, the sample function of a random process, which has the
range of values - @ < x < +w_, The probability that x is less than or equal to X,
a particular value in the range of x, is the probability distribution function of x,
written as P(x < X). The extremal values of the probability distribution function
are; P(x < -w) = 0, and P(x < +w) = 1, and it is a non-decreasing point func-
tion and everywhere continuous as x — +®,

The probability density function, p (x), is defined as the derivitive of the
probability distribution function

d [P(x < X)]
p(xy - B e-1)

or

X
P(x < X) :j p(x)dx 2-2)

-

From the extremal values of P(x < X) it is apparent that

J p(X)dx -~ 1 2-3)

and since P(x < X) is a non-decreasing function, p(x) is always > 0.

Any real functiony = g(x), of the real random variable x is itself a ran-
dom variable with its own probability measures. The above functions can be
extended to cover complex functions and are applicable to discrete, continuous,
or mixed distributions. Consider now two random variables, x and y, which may
be two separate one-dimentional variatesor the components of the same sample
space. For either condition a joint probability distribution can be defined by
P(x <X, y £Y), which represents the probability that the random variable x
is less than or equal to a specified value X, and that y is less than or equal to
the specified value Y.




The joint probability density function is the second mixed partial derivative,

02
p(x» Y) - IX DY P(X E xv y t Y)

or

Y X
P(x <X, y <Y) = J J p(x, y) dxdy (2-4)

As in the one-dimensional case,

+® 4+m
f J- p(x, y)dxdy 1 (2-5)

2.2 TIME AND STATISTICAL AVERAGES

The time average of a sample function, x (t), of a random process is

+T
x(t)dt (2-6)
T

lim 1

x(O2  1.e 2T

if the limit exists,

The statistical or ensemble average or expectation value of the sample
function is

E [g(xt)] - J\jmg(x‘) p(x') dx, 2-7)

@

where x, refers to the possible values of x (t) which can be assumed at the
time t, and p(x,) is the probability density function associated with x (t).

For an ergodic process, the time average equals the statistical average,
with probability one. All of the random processes considered in this paper,
whether due to random fluctuation noise or to random signals, will be assumed
to possess the conditions necessary for ergodicity.

The nth moment of the probability distribution of x (t) is

E[x"(t)] - f x"(t) p(x) dx (2-8)

®

1



The nth central moment is

E [(x - x)"] J (x - X)" p(x)dx (2-9)

@€
where x is the mean value of x, E [x].

A very important expectation value in statistical communication theory is
the characteristic function of the probability distribution of x (t), defined as

M (j£) = E[ei®x] = f el p(x) dx 2-10)

The inverse Fourier Transform of M _(j <) is

+ o

1 o —iFx -
p(x) - P M, (j2)e 1% ds @-11)

-

The nth moment of x (t) can be generated from its characteristic function
by,

E[x"()] - ("

d" M, (j ) I
— 2-12)

den
’ £=0

The above definitions can be extended to the case of multiple random vari-
ables by a suitable extension of the time and statistical average concepts. The
joint moments of the joint probability distribution of the random variables x and
¥ are defined as

+® +oo
E [x"y*] = J J x"y*p(x,y) dxdy @-13)

The joint characteristic function is defined as

+ +m
Moy (630 3%2) f f(‘(jﬁl"*"';"-y)P(X»y)dxdy @-14)

-
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The joint characteristic function is the two-dimensional Fourier transform
of the joint probability density function, i.e.,

+® +m
1 - - + 3L
o . P ~ 3 X LA - ol -1
p(X,Y) 4'”2 ‘I‘ f Mxy(J“:l'J"2) € ( 1 2 )(‘._1(]|_2(2 ]5)
The joint moments of x and y may be obtained from their joint characteristic
function by,

gntk M L
E[x"y<] (- SAUIRAD. (2-16)

on ook
()"l ()‘,2

Two random variables, x and y, are statistically independent when the
mechanism producing x in no way affects y. The joint moment of two statisti-
cally independent variables reduces to

E [xyl = EIx] E ly] 2-17)
2.3 CORRELATION FUNCTIONS

Let x, and x, be the random variables that refer to the possible values of
the sample functions x (t) of a given random process at the times t, and t,,
respectively. The statistical autocorrelation function for that process is defined
as the expectation value

+@ +®
R, (ty,t,) = E[xl x2] - J J‘ xlx2p(xl,x2)dxldx2 (2-19)
-m -

The time autocorrelation function of the sample function of a random process
is defined as

+T
- lim 1
'(Rx(T) TOT sw 2T x(t) x ¥ (t tr)dt 2-20)
-T

where 7 t, - t,, and the asterisk denotes the complex conjugate.




If the ensemble remains invariant under an arbitrary linear time shift, the
process is stationary. For a stationary process, the statistical autocorrelation
function of that process is a function only of the time difference 7. Therefore

R (t,t+7) - Efx.x*,,] - R (7) @-21)
If the process is ergodic, time and statistical averages are the same, so
R, (7) R (1) (2-22)
Some random processes are not stationary in the strict scnse, but never-

theless have invariant mean values and satisfy Eq. (2-21). Such random proc-
esses are said to be stationary in the wide sense.

The autocorrelation function of a stationary, real random process is an
even function of its argument, while the crosscorrellation functions of two such
processes may or may not be.

The following five sections will develop the correlation and crosscorrelation
functions of the particular waveforms necessary for the frequency converter

analysis,

Crosscorrelation of Cosines of Different Frequency

Consider the two cosine waves of constant amplitude and of radian frequen-
cies w, and w,,

f,(t)y = A, cos (wlt +</>1)
f,(t) = Ajcos (w,t + ¢,)
The crosscorrelation of f,(t) and f,(t) is

Rp(7) = E [Al cos (wlt + ¢1) A, cos (“’2t tw,T t (pz)] (2-23)

Since
1
cosa cos 8 = - [cos (a + /3) + cos (a - /3)]
therefore
AA,
Ry(r) = 5 E[cos (‘“lt tpy b wyt dwyr (/>2)}
AA,
+ 2 E [COS ((n)l t + (ﬁ! - (1)2t - r1‘2'l - (/)2 )]

9



or,

A A,

R12(7) = > {COS ((/)l t (/)2 1 (4)2’7’) E iCOS (“’l | u‘2)t]
- sin (</)l b, (:)2'1') E isin (ml { .nz)t]
(2-24)
! cos (‘/’2 Ty Vg ) E [cos (g - “’l)t]
- sin (‘/’2 - (/)l - “’2'/) E FSiI\ (“‘2 - “)l)t] }

Since the expectation value of a sinusoid is zero,
R,(r) - 0O 2-25)

The Autocorrelation of a Cosine

Let

f,(t) = f,(t) = A, cos (wot t &f))
Then from Eq. (2-24), the autocorrelation function will be
A2
Ry(r) = 2 cos (2¢ t wo'r) E [cos 2(uot]

- sin (243 + mo'r) E [sin Qth] T cos w1~ O}

or
Ayl
Ry, (1) Ty COS wyT (2-26)

Crosscorrelation of Cosines of Harmonic Frequency

Let
f,(t) = A cos (nwot +<bl)
f2(t) = A2 cos (mot t (/)2)

where n is any integer > 1.

10




Then w; =~ nwy, and w, - @, in Eq. @-23), and Eq. (2-24) becomes

R,(7) = 12 : cos () + b, + wy7) E[cos (nt 1) wyt]

o = sin (b, + ¢, + @,7) E [sin (n * 1) w,t]

| e t cos (¢ = &, + wyT) E [cos (n = 1) w,t]
= sin (fy = by = wo7) E [~ sin (n = 1) wyt]

{
Since the expectation value of a sinusoid is zero,
Rp(m) = 0 @-27)

The Autocorrelation of a Cosine with Random Envelope and Phase

Let

f(t) = A(t)cos [wot * b ()]

where A(t) and ¢(t) are ergodic, statistically independent random or mixed
processes with ¢ (t) uniformly distributed over 0 - 27.

The autocorrelation of f (t) is therefore,

Re(r) = E{f(t) £*(t+ 1)}

t

1 j e il T p 1
> Re E {A(t) R RS X S AR "}

!

= 2B {A(OA(t 1)} ReE {of @t H dan)}

1 =j T -
5 Ra(7) R_E {e 907 oj [e(e) d>(t+T)]}
Therefore,

1 o F -
R,(7) - > R, (7) cos mo'rifRe E {("M(t) NHT)]} (2-30)

11



The properties of +(t) must be further specified to determine the expecta-

tion value above. This is accomplished in Section 8.1 for the case of an angle
modulated cosine wave,

The Autocorrelation of Narrowband Noise

Consider the band of "white" noise centered at a frequency f, cps, having
a bandwidth of b cps and a power spectral density of a, watts/cps across the
band. The two-sided spectrum representation, shown in Figure 2-1 (a), is

S(f) - ao;—7=< f+f, <-2—
. b (2~-31)
- 0 ) I f + f0| > ?

The autocorrelation function is given by

) (10r3)

R(r) = ap el 2717 df + a, el 2717 df

o) Je

- 8o [ j2m5T j21r—2-7'] - j27f7T
j27T
a, . . .
+ — [ ,277"2"7 ,27727 }27mfgT
) &1 T

Re-arranging terms

b b
j2m 5T -jy2n—>T j2afy T
2a, | of 2" - ¢ ! 2 e’ 0

0—,211f0’r

R(T) =

nT 2j 2

2a, b
= sin 27 S 7 cos 2uf 7T
T 2 0

12




or

. b
sin 271—2-7
R{7) = 2ayb b cos 21 f,T 2-32)
277—2—7
sin x

This function is a cosine wave at frequency f,, with a — envelope, and

is shown in Figure 2-1(b). The autocorrelation function approaches zero for
large values of 7, and has the value 2a;b at + 0.

1 1
For f, = 0, corresponding to a low-pass band of frequencies - 3) i ‘21,

the carrier term in R(7) disappears, and

. b
sin 27+ 7
B 2
R(7) = agb—" . (2-33)
277—1:2)—'7'
S(f)
b b
~ N
J. : ¢ RO
-fo fo AT 290b
i \
(0) In \
/ ‘\ '
4 \
K \ .
’ A -
\,/ ~ R ,/ \\
IQ\_H/ ‘\U AN T
\\ V” -
: \\ ;
L ! _1_
-5 \\U Lll b
. b
sin 2 7157
R(7) = 2ab 5 cos 27 f
2 g
(b)

Figure 2-1. Autocorrelation Function of Narrowband White Noise

[
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2.4 POWER SPECTRAL DENSITY

The total power associated with the random variable x (t) is the time
average of the total energy in x(t), or

AT

1i 1
o Fx(t)]?date
T

X 7 T rw —é—f

The time autocorrelation function for x (t) is, from Eq. (2-20),

p _ lim i
Re(7) = plw 2T | () x*(ti7)dt
-T
For 7 = O,
+T
lim 1
R(O) 7 powar| Ix(O[7dt
~T
or
R, (0) = P,

The Fourier transform of R _(7) is defined as

+ ®
Sx(f) = I Rx(,.,.) e"j2‘l7f'rdt

~

where S_(f) is called the power spectral density6.

The inverse Fourier transform of the above equation is

+ o
R, (1) = JSx(f)evi2”‘Tcif (2-34)

-m

6Sx(f) has been termed the power density spectrum (by Lee), or the intensity spectrum (by
Middleton), or simply the power spectrum (by Schwartz)., The term power spectrum will occasion-
ally be used here to refer to the graphical representation of S (f) as a function of frequency.

14




For v = 0,

R_(0) - JSx(f)(lf = P, @2-35)

1]

The above relationship, which establishes the autocorrelation function and
the power spectral density of a random function as a Fourier transform pair, is
known as the Wiener-Khintchine Theorem for autocorrelation.

The autocorrelation function for a periodic function is periodic and the
power spectral density is discrete. For a random function, the autocorrelation
function is aperiodic and the power spectral density is continuous, with power
contributed by a continuous band of frequencies.

The two-sided W-K transform is written as

R (7) = st(f)ei“”df (@)

-

(2-36)

S, (f) JRx(7)(‘_”"”d-r )

- @

Since R, (7) is real and an even function, S_(f) is likewise real and even,
therefore the transform pair can be expressed as a pair of cosine transforms,

R (7)) = ’[Sx(f) cos 27fr df (@)

-

2-37)

S . (f) = I R (7) cos 2nf7 d7 ®)

-

The two-sided form of the transform pair, although introducing physically
non-existant negative frequencies, is often useful because it allows the expres-
sion of series and integrals in exponential form, which may be easier to mani-
pulate mathematically.

[y
(1]



The two sections to follow will develop the power spectral density of a
constant and a cosine wave from their respective autocorrelation functions,

which are necessary for the converter analysis.

Power Spectral Density of a Constant

Let x(t) A,

then R (1) A

0

From Eq. 2-37) (b),
+ o
S, (f) = Ap? J cos 2nfr dr
As expected
S, (f) = A2 s (f-0)
where & (x) is the Dirac Delta Function.

Power Spectral Density of a Cosine Wave

Let x(t) Ay cos (wyt + )

then
From Eq. 2-37) (),
A2 + o
S (fy = —5~ J COS w, T cos w7 d7

©

Hence

2-38)

+ m
S, (f) TI [cos 2'//(f + fo) vt cos 2m (f - f()) 'I](l/
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or
A2
S, (f) = 7 [5 (F-64) ¢ o (f fo)] 2-39)

Each spectral 'line' of S_(f) has a magnitude of A,2/4, hence the total in-
tensity is, as expected, equal to A,%/2,

2.5 PRODUCT TRANSFORMS AND CONVOLUTION

The determination of the power spectral density of the frequency converter
from its autocorrelation function will involve the Fourier transformation of
terms of the form F [Rx (TR (7 )] and F[Rx"(")] . The resulting spectrum for
these terms can be determined by application of the convolution integral of two
functions

f(t) * g(t) = ff(t‘T)g(T)dT = J f(7) g(t+7)dr (2-40)

- - ®

where the asterisk denotes a convolution.
For the two independent random variables x and y, with autocorrelations

of R, (7) and R (7) respectively, the spectral density of their product is given
by,

S,,(f) = F[R (DR ()] - IR,(v)Rycf)o‘i”“m

-

Since

+ @
R (7) = st(f)e”"”df

-

Therefore

+® +o
S,y (F) - J- ‘[ S, (f)el27f7 df Ry(':)e—i2"f'd'r

o



Then let

+® + o
Sxy(f) = J [J Sx(é) ej2‘”f-r dg} Ry(,r) C_j2'rrf'r dr

-

where the new dummy variable £ has been introduced to avoid possible confusion.

Hence
rt+ O + o s
Sxy(f) J‘ Sx(»’:) Ry (1) e P20 gy (s
o m - m
pt + o
Sx(f) d& J R (1) e I2IETDT gy
= - Y
Since
+ ®
J R, (7) e~ 127UTOT ¢ = Sy(f =-&)
therefore

+ @
Sxy(f) = J‘ Sx(rf) Sy(f"‘«f) d(‘:

Comparing this equation with Eq. (2-40) gives,

Sxy(f) = Sx(f)*Sy(f) (2-42)

or

F[R, (DR (1] = F[R (1] * F[R (D] 2-43)

Extending the same approach, it can be shown that

F[R2(M] = F[R (M] * F[R(M)]

18




or
F[RM(M] = F[R,()H] * F[R ("] @2-44)
where * denotes n-fold self-convolutions.

The first three self-convolutions of the power spectrum of a cosine wave,
v(t) - A_ cos o_t, are shown in Figure 2-2, and the convolutions of the spectra
of two cosine waves at f_ and f, are shown in Figure 2-3.

The multiple convolution of the rectangular spectra of uniformly distributed
narrowband noise, pictured in Figure 2-1 (a), is required for the converter
analysis. The nth self-convolution of a rectangular distribution of the form,

S(fy - 1 5 0 < f < 1
= 0 lfl o> 1
is given by’,
n 1
S() * S0 TThr [x"“ (1) =D+ (D) (-2t - ]

n . . « .
where ( i ) denotes j < x < n, and the summation is continued as long as x,

(x = 1), (x - 2),...are positive.

The first three convolutions of the rectangular low-pass spectrum of band-
width b and height a, are shown in Figure 2-4(a), and the first three convolu-
tions of the rectangular spectrum centered at + f o are shown in Figure 2-4({).
As the number of convolutions is increased, the spectra of S(f) x S(f) for the
rectangle rapidly approaches a Gaussian shape, provided b remains finite.

The convolutions of the power spectra of a sinusoid with the first three self-
convolutions of the rectangular narrowband noise are shown in Figure 2-5. The
convolutions of the rectangular spectra with the self-convolutions of the sinusoid
are shown in Figure 2-6,

"Cramer, (REF. 2, p. 245).
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Figure 2-2. Self-convolution of the Power Spectrum of a Sinusoid
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Figure 2-3. Convolution of the Power Spectra of Two Sinusoids
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Figure 2-6. Convolution of the Rectangular Spectra
with the Self-convolutions of a Sinusoid
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3. CONVERTER OUTPUT CURRENT

The first quantitative theory describing the physical mechanisms of semi-
conductor rectification was developed independently in 1932 by Wilson, Nordheim,
and others®, and was based on the quantur-mechanical 'tunnel' effect. Later
work by Mott, Schottky, Bethe, and Herz'field led to the development of the diode
and diffusion theories for semiconductor barrier behavior®. The fundamental
relationship predicting the current-voltage characteristic of the variable re-
sistance semiconductor diode has the form,

i,(t) I, ("™ -1 vl - o
0 0( ) (3__1)

0 vl <0

where i, (t) is the current through the diode, v, is the voltage applied across
the barrier, and I, and « are constants for the particular diode of interest.

The high-frequency equivalent circuit for a semiconductor diode, which
takes into account the known physical parameters at the junction, is shown in
Figure 3-1(a). The circuit consists of a non-linear barrier resistance, R,, in
- parallel with a barrier capacitance, C,. The equivalent circuit for the diode
frequency converter is shown in Figure 3-1(b).

The spreading resistance, r, results from the constriction of current flow
in the semiconductor material near the contact. The magnitude of C, is depend-
ent on the applied voltage because the effective thickness of the barrier is a
function of the applied voltage. This model does not include the effects of the
diode cartridge and mounting configuration losses, which are assumed for the
analysis to be minimized by proper design techniques.

The voltage applied to the diode, v, consists of the information-bearing
signal voltage, s(t), which may include undesired external noise components,
and a sinusoidal local oscillator of the form,

vo(t) = E, cos w, t (3-2)
The voltage across the barrier is,

v, = v - igR (3-3)

s

8 Torrey and Whitmer, (REF. 15, p. 77).
9ibid, p. 82.
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b
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(a)
|0(t) Rs
> VWV l —
volt) .
v Cb :: Vd
s{t)

(b)

Figure 3-1. High-frequency Equivalent Circuits for (a) The Variable Resistance
Semiconductor Diode and (b) The Diode Frequency Converter

where R_ is the sum of the diode spreading resislance and any series resistance
from the voltage cources.

The exponential term in Ej. (3-1) can be expressed by its power series as,

. (ava)®  (avay)’

Toltavgt THY S by

e
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Therefore,

2 3
ig(t) = I [avd * (;‘:) +(a3v!d) + ]

or

i, (t) Z Vot (3-4)

k=1
where the conductance constants are given by

ak

& = ToTv

a Q_r
- —l: Er-1 (3-5)

Neglecting R_ for the moment,

o©

ig(t) = Z g, v*

k=1

If R_ is not neglected, the expressions for the g, will be altered. The first
three conductance constants with R_ included are derived in Appendix I, and are
given by equations I-7, I-8, and I-9. For most microwave diodes of interest,

r, >> R_, and negligible error will be introduced by neglecting R_. The validity
of this assumption is further demonstrated by the calculations for the representa-
tive diode in Appendix II.

The diode current can therefore be expressed as

o4}

W0 = ) g [s(0) + v (0] 3-6)

k=1

For efficient frequency conversion, the so-called 'mixer condition' requires
that

lvo ()] > |s(t)]
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and for microwave receiver converters this is the prevalent condition. The
diode current, because of the mixer condition, can be expanded in a Taylor
Series about v, (t),

The Taylor expansion for a function, f(x), about the point x  a is,

a

(x_a)n dn
f(x) - ? o Qo f(a)

n=0

The diode current, from Eq. (3-6), is therefore,

28]

[V - Vv (t) " dr 2 R
io(t) = E ~ ) . Z Bove (| 6D

Also

[v—vo(t)]" = [s(t)+v0(t)—v0(t)]“ = s (t)

hence,

e8]

. N n t dl\ b
(1) - E S aivedl IR AN (3-8)

n=0 k=1

The differential term in Eq. (3-8) can be expressed as a summation. Let,

©

I(t) - Z g, Vo© (t)

k=1
Then
dn dn
den (I(t)] = T [go tgivy t g2v02 + .. gkvok + ]
_d . 2 (k— 1)
dt [I(t)J - gl t 2g2V0 + 3g3v0 1 ... kgkvn |
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.:;t; [I(t)] = tk(k—1) g v, D+
d" _ -
[I()] = ...+ k(k-1) ... [k = (n - 1)) g Vo™
dt”
_ +k(k—l)...(k—nil) (k—n) (k-n—-1) ... (k=)
(k-n) (k-n-1) ... Bk Vo b
or,

- k! -
= ... +W g, vok™™ + ...

Expressed as a series,

dar EL' k!
o [I(t)] - P v (1) (3-9)
k=n

Therefore Eq. (3-8) is,

E (t) E -
ig(t) S T —— (k"n)' v kT (1)
ig(t) ? _5. eSS n),n, g " (D EX™  cosw t *7T (3-10)

Let k = n - p,thenk ~ n + p, and,

: % E (ntp)!
15(t) - ToTnt Batm E)f s"(t) cosP ot 3-11)

29
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Also let

(ntp)!

o (3-12)

K(n,p) =~ Bntp) E()p

Therefore,
ig(t) -~ ? ? K(n, p) s" (t) cos? «,t (3-13)
n=0 p=0
In order to determine the form of the i, (t) terms, the above series will be
expanded out to n = 3 and p - 3. This corresponds to letting k go to three in

Eq. (3-4). Therefore,

ig(t) = K(0,0) + K(0, 1) cos wyt + K(0, 2) cos? wt

+ K(0,3)cosdwyt + K(1,0)s(t) ' K(1,1)s(t) cosagt

-+

K(1,2)s(t)cos?wyt + K(1,3)s(t)cosd wt

-+

K(2,0) s2(t) + K(2,1)s2(t) cosw,t (3-14)

+ K(2, 2) s?(t) cos? wet + K(2, 3) s2(t) cos? wy t

+

K(3,0)s3(t) + K(3,1)s3(t) cos w,t

<+

K(3,2) s3(t) cos?w, t + K(3,3) s3(t) cosd )t

Using the identities,

2 ) 1 1
cos“wyt  © D) + 5 cos 2wy t
3 3
cos*” w, t - z cos wy t t —4 cos 3m0 t
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| Eq. (3-14) can be expressed as

10(t) = Ay + Aygs(t) +A2032(t)+A30 s3(t)

+ + +
AO1 cos wy t A02 cos 2wy t A03 cos 3wyt

t A s(t)coswyt t A, s(t)cos 2u,t

t AL s(t)cos 3uwyt + A21 s2(t) cos wg t

t A, s2(t) cos 2wgt 1A, s2(t) cos 3wyt

b Ay, s3(t) cos wet t Ay s3 (t) cos 2wyt

+ A, s3(t) cos 3wyt

33
where,

3 1

Ap = |K(0,0) +5K(0,2)
~ 3

Ay = |K(0, 1) + K(0,3)
!

Ay = 5K(0,2)
1

Ay = 4 K(O,3)
_ 1

. A, - |:K(1,0) +3K(1,2)]

31
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(3-15)

(3-16)



11

12

13

21

22

30

31

32

a3

= [K(l, 1) %K(1,3)]
1
> K(1,2)

1
= 7K(1,3)

—

= |K(2,0) + %K(2, 2)]

= |K(2, 1) +%K(2, 3)]

1
5 K(2,2)

1
ZK(2,3)

—

- 1 |
= | K(3,0) + 7K(3,2)

[ 9

= 1K(3, 1) F%K(3, 3)

L

1
3K(3, 2)

1
- 4K(3, 3)
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1

2g,E, ' 3¢, E}

(3-16)
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“2‘g5E03
5 2
g3 5 85K

4g4 E, ! ng6 E03
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In general, therefore, the output current for the diode frequency converter
will consist of a d.c. term, harmonics of the local oscillator voltage, and product
terms of the signal and local oscillator. The output current can be expressed in
series form as,

1,(t) = Ay

@
+ E Ay, cos pwy t
p=1
o
+ E A, s"(t)
n=1

™

@©
t E E A"p s" (t) cos puy t
n=1

p=1

3-17)

The A, coefficients are functions of the diode conductance constants and of
the local oscillator level, and can be obtained from Eq. (3-16).
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4. CONVERTER OUTPUT AUTOCORRELATION FUNCTION

The autocorrelation function for the output current of the frequency converter
is given by the expectation value,

Ry (") - E{ig(t)i,(tt7)} (4-1)

where i, (t) is defined by Eq. (3-17). Substituting that cquation into the above
gives,

Ry(7) - Ay? + Eq2 ? E Ay, Ay, oS puy t cos p g (t 1)
pzl p':l

+ E 2Z E AgA., s"(t)s"(t+)
n=1

n'~=1

@ 9] o] m
5 . 5 y 54 5 ) Anp An.p. s (t)cos pw,t s“.(t t7) cos p)'wo(t )
n=1 n= p=1

pP=1

Ay, ? Aop cos pwyt ¢t 2EqA,, ? A, s"(t)
p=1

n~1

@ [+ 4]
Ay, 2 E Anp s (t) cos pwy, t}
n=1 p=1

@

+ 2E

N
=
r__/p_.\f__k_,‘,——A—\

—
™

o8]
AOpAnO cos pwyt s (t *7)
n=1

@

28]
54 5 ) AopAnp‘ s" (t) cos pwy t cos plwy (t +7)

-

=

—A— —
2™

2E

n=1

2 2

n=1

p=1

p=1

A _A.

nd "'n'p

s" (t) s™(t t 1) cos puy (t F)



The second term in Eq. (4-2) is a cross-correlation of two cosines, which
is identically zero for all p # p', (see Eq. 2-25), and is of the form

[0
1 A2
2 0p CcOos pmo T
p=1

for all p = P', (see Eq. 2-26).
The fourth term is of the form,
E { s (t) S"|(t 11) cos puyt cos pla, (t 1 /)}

Since s (t) and v (t) are assumed to be statistically independent, the above
expectation value can be expressed as (see Eq. 2-17),

E {s"(t)s"(t 17)} E {cos pu,t cos pl (t 1 1)}
The above expression will be zero for all p # p', and will be
E {S"(t) s"(tt71) } COS pugy
forallp = p'.
The fifth term is zero since,
E {cos puwy t } 0
The seventh and eighth terms are likewise zero because
E {s"(t)cospugt} - E {s"(t)} E {cospun,t} 0
The ninth term is zero for all p # p|, and is
E { s" (t)} COSs Py 7
for all p = p'.

The tenth term is zero since,

E {s"(t) sh(t 7)} E {cos pmot} 0
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Introducing the following definition to express the mixed moment terms,

(1) = E {s"(t) st 1D} (4-3)

nn'

Eq. (4-2) reduces to,

= 2 1 2 2
Ry(7) = Ay + 5 A, > COS Py + A, (bsnn (1)
‘ p=1 n=1

0

t2 Z ZAnO An'0 ® (1)
Snn

n=1 n'=1
n¥n'
® ®
1 (4-4)
P30 D At (D) oy
n=1 p=1
® ® o .
+ g ? ? Anp An'p q)snn. (T) CcOS pmo’r
n=1 p=1 n'=
n#n'
o
t 24y, 2 Ay (bSnO ()
n=1
o w
f Z ; A()I) Anb ‘l)sn() (1) cos Peog
n=1 p-1

Re-arranging the terms of Eq. (4-4) gives,

«©
R = A2+.}_ A2 .
0 (7) 00 > 0 p COS PwW, T
p=1

© [+ o]

+ E E (280080 + Ag A, cos pig AN (4-5)

n=1 p=1
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+ A2 +—1‘A2 cos puw,T| @ 1
n O 2 “np P@wy Snn( )
n=1 p=1

(4-5)
conid

' Z Z Z: [2A||0 An'() : Anp An' P cos P="0 ,,] (bsnn'( i )
p=1

n=1 n' 1
n#y

The equation above expresses the complete output autocorrelation function
of the frequency converter in terms of the diode constants and the moments of
the input signal. Once the statistical characteristics of s (t) are known and the

mixed moments are generated, R, (7) can be found and the resulting power
spectral density described.

The following section will develop the statistical moments for an input con-

sisting of a signal and additive noise, and will describe the resulting autocorre-
lation function.

38




5. SIGNAL PLUS NOISE INPUT CONDITION

For most practical communications systems the input to the frequency con-
verter can be considered as a mixed statistical process consisting of the additive
sum of a desired signal voltage, v(t), and a non-deterministic noise voltage,
N(t), Le.,

s(t) - wv(t) 1+ N(t) (6-1)
The signal voltage consists of a cosine carrier of frequency f  amplitude
or angle modulated by a modulating voltage which is in some way proportional
to the information being transmitted. The noise voltage is assumed to possess
the fluctuation characteristics of shot and thermal noise, hence its properties
can be described by the normal (Gaussian) statistical process.

5.1 STATISTICAL PROPERTIES OF s (t)

The general input voltage to the frequency converter, s (t), can be repre-
sented as

s(t) = A, [1 + aA(t)] cos [wct Py t bqb(t)] + eN(t) (5-2)
The values of the constants, a, b, and c, will depend on the type of modula-

tion present in the transmitted signal and on the presence of noise. For example,
if the signal consists of noise alone, thena = b - 0, and ¢ - 1, so,

s(t) - N(t)

If s(t) is an amplitude modulated wave accompanied by noise, then ¢ 1
and b = 0, or

s(t) = Ao[l + aA(t)] cos [(;)Ct + (;'\O] + N(t) (5-3)

If s(t) is an angle modulated waveform accompanied by noise, a - 0 and
c =1,s0

s(t) = Ajcos[w t * @y + bp(t)] + N(t) (6-4)

The statistical conditions on v (t),N(t), A(t), and +»(t) that are assumed
for this analysis are summarized below,

(1) v(t) and N(t)are statistically independent and are at lcast wide sense
stationary.
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(2) A(t) and ¢(t) are slowly varying compared to cos «w_t, so that v(t)
is narrowband and A(t) and ¢ (t) can be considered as modulation in the usual
sense.

(3) A(t) and ¢ (t) may be periodic, entirely random, or mixed processes.
4) A(t) and ¢ (t) may be statistically related, or corrclated.

(5) A(t) and (t) are at least wide sensgsitgutionary"’ .

(6) A(t) and ¢ (t) are stalistically independent of ), the carrier phasc.
This condition exists for most modulation impression techniques, where the
modulation voltage is impressed on the carrier without regard to a fixed phase
relation.

(7) N(t) is described by a Gaussian statistical process with zero mean and
a variance of o 2.

5.2 JOINT MOMENTS OF s(t)
The statistical properties required for the solution of s (t) from Eq. (4-5)

are the moments of s (t), q)s"" (7), and the higher order joint moments, ® (/)

S nn

and ® (7). By successive differentiation of the characteristic {unction lor
Snn

the Gaussian distribution, the nth moment of N(t) is found!' to be zero for
n even, and a multiple of the second moment, uNz, for n odd. Thal is,

E(N ()] = 0 5 n  odd
= 1-3:-5.... (n-1Dof ;n > 2 even

The moments of s(t) are expressed as,

® . = E[s"0)] = E{lv) NI}

10k ven though A (t) and ¢ (t) are stationary, v (t) may not itsclf be so. It is necessary that the
carrier frequency phase, ., be uniformly distributed in the primary interval, 0 to 2 17, for v (t)
to also be stationary. This condition is discussed by Middliton, (REF. 0, Section 1.3-7).

11l)avcnporl & Root, (REF. 3, p. 147).
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For |v(t)| > IN(t)]|, the binomial series expansion gives,

n!
(I)Sno(T) = E T BT v(t)M™TD N(t)!

E ! -
C‘;l“’)"f-i_f E v(n 1) (t)} E{Nl(t)}
1=0
From Eq. (5-5),
- (1 -3-5...(n-Dln!os )
T (7 7 (n-1)! 1! = E{veTh o) 6-0)

1=0,2,4

The joint moments for s (t) are similarly expanded as,

® (7)) = E {s"(tys"(t rn)}

= E {lv(t) + N(OI" Iv(t try 1 N(E ")

Applying the binomial series to the above expectation value gives,

(Dsm('r) =

E n! n— n! n-1' ‘ '
? e vrTD (£) N (t) ? PR vOTI e+ YNV (L)
1=0 1" 0
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or,
o (1) -
Snn
(5-17)

E E (n!)? ; iy .
wonre s BT @ v @} BN @ N o)

The joint mixed moments for s (t) are given by,
d)sm.(f) = E{lv(t) + N()I" [v{t +7) + N(t 1 '/)I"'} (n#1)

Applying the binomial series to the above gives,

Q)Snn' (T) =
n ¥ (5—8)
E n! n'! _ o .
E":’l)”; (n—l);TTFE {v(n l)(t) vn 1 )(t 1 I’)} E{NI (1) N! (t t )}
1-0 =0
n#n'

In order to simplify the expressions for the moments of s (t) somewhat,
new running variables will be introduced into the expressions above, Let,

a - n-~1
L = n-V
y = n' -1
5 - n' -
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The moments of s (t) can then be expressed as,

n

B [1'3'5...(n‘1)]n!oN“
Fgno (7D 7 at 1! () (5-9)

1=0,2,4

and the joint moments as,

|)2
C o (7) 7 z z a!(ﬁnsﬁ 1 e @ (1) (6-10)
1=0 1'=0

and the joint mixed moments as,

__n'n!
nn' () ot Pas (ML) 6-11)
n#n

The moments, joint moments, and joint mixed moments of s(t) from the
above equations are listed in Table 5-1 for n and n' out to three. For this
table,

Elv(t)] = 0

Efv?2(t)] = o2
Elv(t) v(t +7)] = R (7)
EIN(Y = E[N(t)] = o
EIN(t)N(t +7)] Ry(7)

E[N2(t)] = o

Also, since both v(t) and N(t) are assumed at least wide sense stationary,
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@ 1 (7)
® 40 (7)
® 50 (7)
© 4, (7)

<DS22 (1)

q’sss (7)

¢'Sl2 (1)
(1)513 (1)

(] 23(7)

'

S(t) v(t) + N(t)

o (1) E{s"(t) s (t )}

'
Snn

O’N2 d)v 20('r)

Rg(7) R, (1) t Ry(7)
¢22(") f (l;\lgg('/) t 4Rv ('I)RN('/) | 2”V2”N2

(|)V33(.-,) i q;\l”(v,) 1 6"",13(")“N2 | 5(|)N13(/,)(,v2 l'ggv(,)q)Nn(,)

POP R (DR () 1 IB® ), (1P (1)

Cpu () P ()

P31 () P ()t ) 3R, (1)og? 1 30 PR(1)
, 2 2
¢S32(') (bvza(’) ' (I’N 23(7) ! (l’Ny)(’ Yot b3y ("an(’)

+ 6RV('r)(le2('1) t 6(])12('1)RN(/)

Table 5-1. Joint Moments of a Signal Plus Noise Mixed Process
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E v (1) v (e )] E[v¥(t) v (t t )]

E[N ()N (t 1)) - E[NT(t)N"(t 1 )]

5.3 JOINT MOMENTS OF N(t)

The joint moments of N(t) are most readily obtained by successive differ-
entiation of the joint characteristic function, as shown by Eq. (2-16).

(‘)l*’l' M , , :
© (- E{x'x} - Y Ugias (65-12)

The joint characteristic function is given by Eq. (2-14),

T 6-13)

If the pair of random variables x, and x, are sample functions ol a Gaus-
sian process, as N(t) is, the joint characteristic function is given by 12

1 ; ;
[-,ﬁ- + & -2, 2+ 2,24 90 0 pé s ]
. L. FRA 3" ( ' T, 20 a pE S
M(Js‘;l.y:,‘,) el 1 272 2\"1 2 2 172 |z) G-14)
where,

012 =Xyt - xl2 - second central moment of x,
022 = x22 - x:_,2 = second central moment of x,

B} 1 _ — . .
o = E|[{x, - x X, ~ X corrcelation coefficient

0,0, 1 1 2 2

Since N(t) is described by a Gaussian process with zero mean and variance
o2, Eq. (5-14) reduces to,

1
—— (2,24 2,24 7214‘:)
2 (‘1 N TN TN AN

My (i<, jg,) T e

2Middleton, (REF. 6, p. 337).
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N

® v (1) E{N'(ON" (e 1)}

(I)N“’ ) 0
(me (1) ol
“’N30 (1) 0
(I’Nn ) Ry (1)
© (1) ot 2RE ()

| ® a3 (7) 7 9ot Ry (7) * 6RZ(7)
¢N12 (r) = ‘I’Nn (r)y = 0
() T @ (7)) = 30*Ry(7)
Py T ) 0

Table 5-2. The Joint Moments of N(t)

In addition, since x, “ N(t) and x, - N(t t 1),

, 1 A
Py - T, E (N(t)N(t 4+ 7)) = — —-

(fN ()N

Therefore, from Eq. (6-12),

2R
()l*l' —;—02 (cZ 24 N;Q K .¢>
- : -1 S N 1 2 4 172
® Ty (- e N

N as bae
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or,

o ()l+l' (—'1'112#?2“ !‘17252‘12 (7).‘: ‘k)
® (7Y T DV el 2N 2N e TR g
70

N s 1 ges !
()"l <,

=&

12

The moments, joint moments, and joint mixed moments of N (t) are listed
in Table 5-2 for 1 and 1' out to three.

5.4 OUTPUT AUTOCORRELATION FUNCTION FOR SIGNAL PLUS NOISE INPUT

Equations (5-9), (5-10), and (5-11), which express the statistical moments
of s(t), can now be written as,

lr - 3 - (n—l)ln'uN
P (7) - T AT T, () (5-18)
1=0,2,4
P T -
s"“( )
E _S- (e 3 L
e T o W lié i, ¢ a0
al B 1T 1T CERIEER ( ) .
£ =6,=0
(7Y
n#n
n! \ g1+t
- Y D S I, PR
al }/' 1! l‘ ( J) 3e 1 s ¥ MN (J“l’ J(’2) q)leﬁ(l)
= oy Jl )2
) B FI:Q:()

The above equation express the joint moments of the input, s(t), in terms
of the joint moments of the signal, v (t), in the presence of additive Gaussian
noise with a characteristic function given by My (j ;. j3,)-

Insertion of the above equations into Eq. (4-5) gives the output autocorrela-
tion function for the converter in terms of the joint moments of v (t),
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R, (1) Ag? a, cos puwy7 Fag & (1)
v

P Ay cos puy 7 ‘l)v.xo(") R (hvu/i(")

Foag cos puyt @ (1) 1 ag ¢ ()
/
Tt ag cos puy T (1)
v
The 'a' coefficients of Eq. (5-21) are given by,
24
1
[ 2
a, 5 A, o
p=1
@© n
. . - | n
Ap 11 -3 5 .. (n=Dintoy
A 2hq0 al 1!
wd J
n"2,4,6.. 1 0,2,4..
m mn n
. . - \ n
AOHA"P 1 3 5 ... (n~ D] n! N
A2 at 1
_J d |
n=2,4,6.. p=1 1°0,2,4
m 0 n n
2 1y2
) A (nh)
a3 D M
J — . J
n=1 p=1 1=0 1'=0
[0 8] [s9] n n
2 2
1 A, o (n!)
a, -~ =5 T oo M
4 2 ol st N
— L — | 4
n=1 p-1 10 1’ =
© ® ® n n'
')
7 AnO An.0 n! n'! y
ag - al oyt N
| eed - ) 4 ' :
n=1 n 1 p=1 =0 1'=0
n#n
o (34} 19§ " ”'
A A, ntn"!
_twone
¥ al oyt 1t My
e - - 1 9
n=1 n' 1 pil 10 1' =0
n#£n

G-21)




where,

' ()l+l' .
M, - (- M, (154,39 b, (i
N ( ) '(.)g*ll r3'.)521 N (J 1) 2) N1t ( )
75,70

The complete solution for R, (7) requires that the joint moments of v (t) be
specified. The following three sections will develop these moments for specific
input signal voltage waveforms.
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6. SINUSOIDAL SIGNAL INPUT

The first input waveform to be considered consists of a constant amplitude
cosine wave of the form,

v(t) = Ajcos (v tt ) (6-1)
where ¢ is uniformly distributed over the primary interval 0 to 2,.
The input shown above is a completely deterministric process, since the
future behavior of the function at any time t is available once the phase . has

been specified.

In this section, the joint moments for the above input will be generated, and
the output spectrum with and without noise present will be presented.

6.1 GENERATION OF JOINT MOMENTS

The nth moment of v(t) is given by,
® (1) = E[v“(t)] = AJSE [cos" W, t]

where ¢ is set equal to zero for convenience,

The nth power of the cosine function can be expressed as,

1\" - _. n
n - = ) '”(‘ t * . 3} m(_ (]
cos” w, t ( 2) [(‘ ¢

Introducing the binomial expansion,

n

cos" w t = l)n _—n'_ ej (n~2y)mw_t
¢ 2 (n—y)!y!

y=0

Re-arranging the terms to form cosines results in,

i {1\ ! 1\"! n! (6-2)
cos"w_t = 3 z——] + > T**“‘;—; cos (n ~ 2y) « t,

n )
2 y=0 for n cver
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n—1
- (L E _nt (6-2)
<2) (n-y)ty! °° (n - 2y)e.t,  fornodd contd

Since the expectation value of a cosine is zero, only the constant term in
Eq. (6-2) will contribute to ® (7). Therelore,

0 '
» (7Y - <_> —r— for n cven (6-3)

=0 for n odd

Similarly, Eq. (6-2) can be applied to the joint moments of v (t), which are
expressed as,

¢ (r)y = E [AOZ" cos w_ t cos™ w_(t 1t 7 )] 6-4)

Therefore,

For n even:

n=2 n~2
) ) 2 2 Y
(n™1)
1 1y2
+ A20 E Gﬁ ; (n.) _ ,
0 2 n-y)'y! Ty o cos(nT 2y)e t cos (N~ 2y ) (t 1)
; : iytn-y)ty! ¢ «
é:ﬁJ y'=0
For N odd: (6-4)
® W (T)
v
n—1 n-1
) 2 2
13,2 (7D ? (n!)?
2n - N '
A0 E (2> z]—;}m";‘a{_"y.)! y" cos (N~ 2y)w tcos (- 2y ) (U 1
y =0 y' 70




All other terms will vanish, since they are expectation values of the product
of two cosine functions of different frequencies, (see Eq. (2-25)). Replacing the
terms above with their expectation values will give,

For n even:

| ANy at P
q)vnn (7) = __2-— (n ')4 (!1 'W“yrs‘ ' cCOoS (n et 2y) u)c T
"5 M

For n odd: (6-5)

A, 2
(bvnn(T) - T (n—y)' ] cos (n—2y)wc7—

The joint mixed moments for v(t) can be generated in the same manner.
These moments are given by

. ' o
d’vm. (1) - E [AO(“ ") cosn w_ t cos™m (t /)]
n#n'

or,

o (7—) = Ao(n+n') E [COS" i t COS"' w (t i )]
v ¢
n#n'

Applying Eq. (6-2) to the above, four sets of non-vanishing terms are generated.

For n and n' even:

® ., (7)) = AO(“+“')

nn

vn#n' n 2 n' 2 (6-6)
(‘5‘) 7! “
1 (nta'~ 1) n‘!" n' !77___ )
: YT e ey Ty <o 2y




@ 15(T)
® 2 (7)
@ 4 (7)
® 1y (7)
5 (1)
4 (1)
@ 1 (1)
® 10 (1)
@ 4y (7)

@ 5 (1)

® nn' (” )
v

E {v"(t) vttt /)}

0
1
o 2 > A2
0
1
Rv (7) E A02 coS ..)C 7
1 1 1
”’2' ”v4 1 Rv2 (1) -4- A()4 | 8 A()4 cos 211% y
3 (;V4 Rv (7 ) ! RVS (1) _3_2 A()() Cos i :’f.é A()()
®pn(y -0
v
3 3
3 Uv2 Rv (T) - 'g A04 COS i, T
3 3
DY UV2 R, (7) Y A04 cos w T
(Dv32 (ry -~ O

Table 6-1.

Joint Moments of Cosine Wave
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For n andn' odd, or n even and n' odd, or n odd and n' even:

Y y'
(ntn'— 1) ’
1 n! n'!
q) . i —_— ~ 9 ] ¢
Jo' (7 <2> 2 2 -y oyt yt O80T
n¥fn 7=0 70

(6-6)
where, )
Y = n-2/2 (for n even) © n - 1/2 (for n odd)
Y = n'-2/2 (for n' even) = n' - 1/2 (for n' odd)
Only terms where (n - n') - 2(y - y')can exist in Eq. (6-6) (b), because

all others are cross-correlations of cosine functions of different frequency.
Table 6-1 lists the moments of v (t)for n and n' out to three. All joint
mixed moments whose sum n ' n' is odd do not exist, hence only those moments
for which n + n' is even need be considered in Eq.'s (6-5) and (6-G).
6.2 OUTPUT SPECTRUM FOR COSINE INPUT
The output autocorrelation function for the frequency converter with a
cosine input can be found by inserting the joint moments of Eq.'s (6-3), (6-5),

and (6-6) into Eq. (4-5).

Eq. (4-5) is shown below for n and n' out to three.
R = A2 . A2 + A2 2 + A2
0(7) o0 o1, €OS wy T 02 €OS 20wy T 03- €0s 3. 7]

2

* 244 [AIO q)slo (7) + Ay q)szo (1) + Ay q)s3o (7 )]

3 3
* 2 2 Agp Bap €OS Py 7 q)SnO (7)
n=1 p~1

6-7)

t AlO2 q)sn (r) * A202 (bszz (T) ! A302 q)sss (r)

55



3 3
+ 1 2 {
- S © PN -
2 AL cos pugt b (7)
n=1 p~1 .

b 2A,Ay (‘)Slz (1) 2A4 A, (I)S“ (1) V 2A, A, (l)szl () (6-7)

contd
i 2A20 A30 (hS“ (r) 2A10 A30 d)s*” (1) | 2[\20 AS() (|)S“ (1)
Utilizing the values of Table 6-1, Eq. (6-7) will be,
= 2 4 2, 1 2.4
Ro (T) - AOO 2A00 A20 (Tv + 2 A20 Uv
1 2 2 1 2 4
+ 5 AOp t AOp A2p o, +TA2p o} cos puy7
| A 2 | —:}— 2 4 i (A 2 ]
10 2 Ay o, YA A 0 RO 68)
-8

20 R2() 15 A2 cos puy 1 R2(1)

-+

1
A302 Rv3 (1) * D) A32p €cOSs pwy T RV3 (1)

-+

1 3
[—2— A12p vy A32p o b+ 3A A, Uv2:l cos puy T R (1)

where P is summed from 1 to 3.

The power spectral density at the converter output is obtained from the
Fourier transform of each term in Eq. (6-8). The transforms of the product
terms, as shown in Section 2.5, are determined [rom the convolution,

PIRGOR(D] 8,05 * 8,0
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The contributions of each term of R, (7) to the output spectrum are shown
in Figure 6-1, where the constant coefficients are given by,

1
- 2 . _—
- Boo [AOO + 2A00 A20 ov2 + 3 A202 ()v2]

_ (2 1
BOI (p) - [—2— AOZP ¥ AOP A2P Uv2 * T A22p Uv4]
(6-9)

B 3
Bp ~ [A102 t oA ot T BA A, ovz]

1p 1Ip ""3p

1 3
B,(p) - {31\2 vTA32l,()v4 i 3A, A uv{l

The complete output spectrum expressed in terms of the 'A' coefficients of
the diode can now be found by utilizing Figures (2-2) and (2-3) to obtain the
spectral component amplitudes, Then,

1
Se(f) = [Boo +?A04A202:| 5 (f +0)

1 3
— A2 =
[4 Ay" By ¥ 64 A061\30'2] 0 (f * fc)

+
[ 1
+ LEAO“Amz] > (fx2f) (6-10)
e [<Aasa, > (F v 3f)
. . 128 o T30 c
Tt 1 1
_ —_— 4 2 N
+ [2 By, (P) + 35 A, Azp] o (f + pfy)
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RO('r) =

00
+B,, (P) cos pw,T
*Byo R, (7)
+AZRI(7)
tALIRI(7)

+ B,,(p) cos puwy TR (7)

+%—A 2

20 COS PwyT R‘,2 (7)

1
+ "2‘A302 cos pwy,TR 3 (7)

(o]

T,T+T;¢¢;¢;

(TR

Note: Amplitudes of spectral components not drawn to scale.

Figure 6-1. Spectral Contributions of the Components of Ro(") for a Single Carrier Input
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1 3
’ ['g‘Acz By, (P) 3‘55““] JIENCIA f.)]

. 1
+ [—GZA"‘A p] b [f t (pf, ¢ 2fc)] (6-10)
: contd

[—s—iEABA2] s (14 (pto ® 31,)]

The relative magnitudes of the spectral components of S, (f) can be ob-
served by utilizing the 'A' coefficients listed in Appendix II, Figure II-4, for
the 1N53C diode. The output components of S, (f) for this diode are displayed
in Figure 6-2, where E; is 0.25v and A, is 0. 01v. The magnitude of the spectral
components is plotted m db, with the zero db reference set at the f_  level at the
input to the converter.

The conversion loss of the converter for fundamental mixing is 7.2 db. The
output filtering requirements will be primarily dictated by the local oscillator
spike at f,, which is f_ cps away from the desired output frequency and 23 db
above the desired output frequency level,
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6.3 OUTPUT SPECTRUM FOR COSINE PLUS NOISE INPUT

The output autocorrelation function for the frequency converter with a signal
plus noise input is shown as Eq. (5-21). Insertion of the moments of Eq.'s (6-3),
(6-5), and (6-6) into that equation results in the output autocorrelation function
for a cosine plus narrowband noise input.

The non-vanishing moments of the cosine plus noise input for n and n' out
to three are listed in Table 6-2 as a function of o 2, R (7), 2, and Ry (7).
These moments were obtained by applying the joint moments of Table's G-1 and
5-2 to the expressions listed in Table 5-1 for the signal plus noise condition.

The complete output autocorrelation function for the converter for n and
n' out to three is shown below:

1
Roy(T) = A’ + 28 A 0002 + 28,20 202 + 3 A ot Ao
1
ty Am"’oN4 + Azp2 ok ”Nz] cos puy 7
c Az P2 A208 1 6A LA
10 2 M3 ¢ 10 430 ¢
+ 12A,A,, UN + 9A302 UN2 (UN2 + Uvz)] R, (7)

1
+ A 2Rz('r) +— Azp cospwo'rR (7) (6-11)

1
tALZRI(7) ¢+ 7 1\3p2 cos pw, 7 R 3(7)
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1 K]
— 2 —_— 2 4 -2
+ [2 Alp + 2 A3p o, 1 3AlpA3p v,

9
2 iy 2 2(, 2 2 e , - .
f 6”N Alp A3p ¢ 2 A3p r)N (( N ' ”v )] COS peg 7 Rv(/)

(

)
t [A102 t 4A10A30 (3uv2 ! 3“N2) ! A302(‘;uv4 { lﬂnv2.>N2 ] ()UNQ):I RN(/)

—+

28,02 Ry2(7) 1+ A2 cos pay 7 R (7)

-+

6A,2R3(7) t 31\32p cos pw,7 R3(7)
6-11)
cont'd

-+

1
it 2
[2 A192 : 6AlpA3n (”v2 F N )

1 9
{ —2—A392 ("'2.”\,4 bABo 2o 9“N4):| cos puyt Ry (1)

-+

[4A,% + 242 cos pwgT] R, (7) Ry (1)

+

9
[9 At —2-A32p cos pwo'r] R,2(7) Ry(7)

-+

[18 At + 9A32p cos prT] R, (1) R2(7)

A comparison of the above equation with Eq. (6-8) shows that the presence
of the narrowband noise has altered the amplitude of the first order terms, (i.c.,
de, €0s w7, R, (7), and cos pwy7 R (7)), but has left unchanged the sccond and
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third order signal terms, R ?(7), R 3(7), etc.). In addition, a complete sct of
noise~only terms has been generated which are similar in form to the signal
terms. Mixed third order terms, involving both R, (/) and R, (/) are also
present.

The output power spectrum for the converter with a cosine plus noise input
can be obtained from the Fourier transform of each term in Eq. (6-11). The
positive frequency spectral contributions of each term of R, (7) are displayed
in Figure 6-3. The coefficients are given by,

1
,Bm‘ = [A002 + 24, Azo ()’N2 (rvz + 2A202 orv2 ()N2 t D) A202 ”v4 ! A2o2 ”N{l
B lA 2 A A 2 2 _l_ A 2 4 4 _1.. A2 4 4 A2 2 2
()1'(p) 2 Top Op &)”v N 4 Oy 2 2p"N '.’.p‘lv N
B :A2+-3—A24+6AA 2128 A, 02 P 9A 202 (0 21 0 2
10’ 10 2 730 10 %30 7y 10 230 N 2 N ("N v )
B..(p) = lAZ +§.A204+A’A (3 + 60.2 +—A 2 2 4+, 2
11’ p 2 1p 4 "3p v Ip " 3p Uv U ) 3p N (UN Yy )
r = A 2 + 12A_ A ( 2 4 2 + A 2 (-2 4 4 18 2 4 4
10 10730 (9, 7 Oy ) 30 \ 2o o,? oy 9oy
I = —I-A 2 1 6A. A 2 2 1 lA 2 (—9_ 4 2,4 4
11(P) : 2 M phyp 9, IN 7 A3, \7 0, 18«)v ag 9uN)

The Fourier transform of the terms of R, (7) that involve the product of
RN (7) with itself or with cos pw, T canbe expressed as Sy () displaced by
t pfy, i.e., Sy (f tpf,). This can be shown by the followmg

F [cos Pwy T RN(’T)] = F [cos pwo'r] * S, (f)

5 (f £ pfy) * Sy(f)



S(t) = Ay cos (w t t @) t N(t)

LI CONEER {s"(trys~(t + N}

®u(m) © R, (7) * Ry (7)

®,, (1) = [70—;‘ ot t 20v20N2:| + 4R (T)Ry(7) + R2(7) + 2R} (7)

¢ (1) “ R3(7) + 6R3(7) + OR2(7T)R(7) * 18R, (7)Rz (1)
+ g. 4 1 902,24+ 90 4% R (¢
3 v, o oy ON v(l)

9 :
+ [—2—()V4 t 18<)V2()N2 t 9”N4] R, (1)

® (7)) = @y () - [_:;'uv2 + 3(;N2] R, () + [30,2 1 30,2] Ry(1)

1
2 - — 2
Ty 2 Ac
.1,
R (1) = 2Ac cos w_17
()'N2 - 2a,b
. b
sin 2'//—2-'r
Ry (1) 2a,b T, cos .
27/77

Table 6-2. Joint Moments of Cosine Plus Narrowband Noise

64




Ry(7) =

B |

0
+ By, (p) cos pw 7 1 J 1
. 21, 3¢,
;
+ A2 R? Li
0 2f_
+AZRE (1) .
[ [
+B.1 Lf i 4 |
1 (P) cos pw,7 R (7) foif_ 2fy1f_ 3fc§fc
+3A22pcospwo7- RV(T) j;'n’ {:tl’ .11 (]

1 1‘1 { L’.i.! ot

S Aa"’p cos pw,T R (7) +4-Ly B 14

* o Ry(7) I{_:

+ 28,2 R*(7) ‘%\‘c

+6A, 2 R3(7) [}g}c

+ I_'n(p) cos pwyT Ry(7) n.n 11,01 A

+ A22p Cos pw,T RN2 (7) AAA LYV WY, SN ¥V ¥ N
+ A2 cos pwyT R3(7) B VAVAV. NN \VAV NV, U, ¥ U
+ Ay? R (7) Ry(7) ([) L

+9A,2 R2(7) b '3'1‘

+ 18A,2 R (7) R2(7) ,;\‘;\,c -

+ 24,2 cos puyT R (1) Ry(7) L0 G‘;DJ-‘ mllm
+% A,2 cos puy7 R2(7) Ry (1) @:E:]:‘? alllla ol

+ 9A32p cos pwy 7 R (T) RNZ(T) ———A‘A‘A’A—A‘OAQAAA—“AM

Note: Amplitudes of spectral components not drawn to scale.

Figure 6-3. Spectral Contributions of the Components of Ro(7)
for a Carrier Plus Narrowband Noise Input
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Similarly,

F [cos pwy7 RZ(T)] - %b (f + pfy) * Sy(f) * Sy (f)
1
T Sy (f tpfo) * Sy (f t pfo)
1
Flcos pwyTRE(T)] = 5 Sy (f +pfy) x Sy (f t pfy)

A2 s (f+f,) * S(f)

-hlv-

F [R, (1) Ry (7)]

TAIS (F1 1)
F[R2(T)Ry(7)] = % A2 S, (f) t %Ag Sy (f + 2f.)
FIR,(DR2(D] = 5 AZS (Fx ) » s.(f+7,)
F [cos pwy TR, (T) Ry(T)] = —;—Aj Sy (f +t pfy t £)
F [cos pwy7 R2(T) Ry (7)] - %Aj Sy (f + pf,y) 1 —;— A% S, (f l.pfo b 2f,)
F [cos pw,7 R, (T) RZ(7)] = —é—Ag Sy (f+pfy t £,) * Se(f 1 pf, 1 £)
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The amplitudes and form of the above spectra can be obtained from the
figures of Section 2.5. All of the resulting spectra above involve S, (f)ora
self-convolution of S, (f) centered about a particular frequency, therefore the
results of Section 2.5 are applicable to the solution of S, (f).

The complete output spectrum for the frequency converter, expressed in
terms of the Anp coefficients of the diode, can now be found by utilizing the
above convolutions in Eq. (6-11). The resulting spectral density is,

S, () [Bm.+~81-Ao4Am2] 5 (f - 0)

1 3 |
+ [4A20 By * 52 ArAs 2] > (f + £)

+

[116 AjA 2] 5 (fF t2f)

+ [T;—SAGA 2] 5 (f £ 3f)

(6-13)

-t

1 1
[2 or (P) + —A‘A2] 5 (f 4 pf,)

+ [SA B,y (p) * 256A°A2] s (f+ pfy * f)
+[—6l4—A4A2] 5 (F+ pfy ¢ 2f,
+ {5—:-2-1\61\ 2] s (6t o, ¢ 3¢)
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ro 3 A sueo

t 24,02 Sy (f) * Sy(f)

6ALE S (D) ¥ 8.()

+ [%ru(P) *'Z‘ AczAszp] Sy (f + pfy)
+3A22p Sy (f + pfo) * Sy (f t pfo)
o A% Sy (f+pf,) : Sy (F + pf,)

2

2

A2A2 S, (f t2f)

9
= 2 2
+S AZAGZ S, (f +

-+
-
]
S—
*
wn
z
—
las]
I+
—r
~
S

-+

1
v ATAY, Sy (f+pfy 1 1)

P

9
¥ .ig Ac2A32p SN (f * pf() t 2ft)
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9
9 -13
) Ac2A32p Sy (f ¢ pfy + f.) * Sy (f pfo f") (20‘1“:

6.3.1 OUTPUT SIGNAL TO NOISE RATIO

The terms of R, (7 ) that will contribute noise power near one of the desired
output frequencies, say at f, - f_, can be seen from Figure 6-3 to be,

ru( 1) cos wy 7 Ry(7)

.‘\312 cos wy T RN3 (7)

A312 cos wy T R 2(7) R, (7)

N

9A,% cos w7 R, (1) RZ(7)

The mean square value of the noise power near f, - f_, N, is the sum of
the mean square values of the power that portion of the spectrum of each term
above which falls near f, - f_. That is,

- 111 311
No ~ 4[2 ru(l)"'nz] +E[7A312‘7N6]

where each bracketed value above corresponds to the total power of the contrib-
uting term and the multiplying fraction is that part of the spectrum which is
near f, - f_. Therefore

1 3
No = -8.UN2 [rn(l) *2 Ayl (UN‘ t 902 o2 + (}v‘)]
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The signal power at f, - f_, S, can be found in a similar manner,
. 171 1[1
S 7 [3 B,y (P) 2] "% [: Ay’ "]
1 1
I —
8 Ty I:Bll' (H* 3 A312 Uv4]

The signal to noise power ratio at f o ~ f. is therefore

B 1 { _l..A 2 4
(S()) uv2 ll'( ) 3 3 Oy

N 2 , 3
° N [[ u(h '—4—A3‘12 (”N4 t 90 2o "v4)]

(6-15)

Since the input signal to noise power ;‘atio is given by

S| ()v2
N

Therefore

1
(So> [Bll' (1) + 3 A,,? Uv4] <Si>
<) = [ =] 6-16)

3 N.
Fu(h +'74_A312 (ON4 * 90v2 o+ ”v4)]

1

The above equation relates the output signal to noise ratio of the converter
to the input signal to noise ratio, in terms of the diode constants and the mean
square values of the input signal and noise.
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7. AMPLITUDE MODULATED SIGNAL INPUT

This section will consider a converter input of a cosine carrier with a
modulating envelope of the form

v(t)a = Ap (114 aA(t)] cos (w t + o) (7-1)
where: a is the modulation index, and

A(t) is the modulating voltage, with |aA(t)| < 1, so that no
overmodulation occurs,

The modulating voltage, A(t), is assumed to possess a rectangular Gaussian
spectrum centered at zero frequency and (_.Zbeying the conditions listed in Section
5.1. Such a spectrum is a reasonable model to assume for the representation
of many types of complex waveform spectra such as those of voice, television,
frequency division multiplex telephony and other communication signals '3,

7.1 AUTOCORRELATION FUNCTION OF AM WAVE

'
The autocorrelation function of v(t),, is obtained from Eq. (2-30) as

A02
R (M ~ —2— R, (7) cos w_7 (7-2)
where R, (7) is thé autocorrelation function of V(t) = [1 + aA(t)].
The power spectral density is then
A°2
S, (D) = 7S, (f) * s (f+£) (7-3)
A02
=S, (f6,)

where S (f) is the power spectral density of V(t).

BAbramson, (REF. 1, p. 407), and Stewart, (REF. 13, p. 1539).
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For

b b
S, (f) ag 3 Ty f < o
l
-0 el > —2’—
then
Sy(f) = »(f-0)1 a%S,(f) (7-4)
and
A2
S, (O =3 [P(E26) +ars, (£11)]
(7-5)
AO2 A02
=g o (fFrf) vat s, (f 4 f)

This spectrum is identical in form to that of a cosine as f_. plus narrowband
noise, N(t), centered at + f_ and - f_, i.e., v(t ) an CN be expressed as

A, ‘
v(t)AM - A, cos (mct + (/)) 1 a‘—Q‘N(t‘) - (7-06)
7.2 CONVERTER OUTPUT SPECTRUM FOR AM INPUT
The spectrum of v (t),,, as given by Eq. (7-6), is precisely the input
spectrum considered in Section 6.3, except for the multiplying factor on N(t).
The results of that section may therefore be utilized to obtain the output auto-

correlation function and power spectral density of the converter.

The joint moments of v(t),, will be given by Table 6-2 with the following
substitutions,

1
”N2 D) aZa,bhA,? (7-7)
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. b
1 sin 271'57
Ry(7) = o aZa bA,? 5 cosaw.T (7-8)

20T

2

With the above substitutions, the converter output autocorrelation function
for a carrier amplitude-modulated by narrowband Gaussian noise input is given
by Eq. (6-11). The complete output power spectrum for the frequency converter
is given by Eq. (6-13), with Sy (f) replace? by the modulating voltage of the AM
wave, S, ( f).
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8. ANGLE MODULATED SIGNAL INPUT

In this section the input to the converter will be taken as a cosine wave which
is phase or frequency modulated by a rectangular Gaussian spectrum centered at
| zero frequency and obeying the conditions listed in Section 5.1. The modulated
signal can be expressed as :

V(g Agcos [w t 1t g(1)] 3-1)
.. where ¢ (t) is the instantaneous phase-angle shift created by the modulating

voltage. For phase modulation, PM, the information, x(t), is directly propor-
tional to ¢ (t), i.e.,

¢(t) = kyx(t)

For frequency modulation, FM, the information is proportional to the in-
stantaneous frequency. The only essential difference between the spectrum of
the PM and the FM wave is a factor of 2. The PM spectrum resulting from a
modulating spectrum of S () is identica} to the spectrum resulting from FM
with a modulating spectrum of w?$S () M.

8.1 AUTOCORRELATION FUNCTION OF ¢M WAVE

! The autocorrelation function of v(t),, is given by
R, (Mgw ~ E{v(Opv * (t1 7}
From Eq. 2-30), this is seen to be

A2

0 .
R, (T)yw = 5 ReE {el (6 ""5(“")]} cos w T (8-2)

The expectation value in Eq. (8-2) is

E {e" [@-da]} , I j elitimihl (4y.by) iy dip, (8-3)

WStewart, (REF. 13, p. 1540).
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where
¢y (L) and ¢, ° b (t tT1)
Comparing this expectation value with the joint characteristic function ex-

pression, Eq. (2-14), it is seen to be the particular characteristic function with

flzland§2:"‘1,i.eo’

+m + 00
M, Gomi) J I 7 p(x, vy dx dy 8-4)

Therefore, Eq. (8-2) can be written as
A2

R (Tenw = o Re[M¢,l4,2(j,-j)] cos w_ T

Since ¢ (t) is described by a Gaussian random process with zero mean and
variance o (/)2, its joint characteristic function is, from Iq. (5-15),

_4 24, 2 - 2
. . o o QR‘) -0, +R )
My 4, (ir—d) - ¢ 2 Lo oy - 2w 0] O ( 10
Therefore
A02 ~o,2 R, (T)
R (T)yy = 5 ¢ ¢ ¢ cosw T (8-7)

8.2 POWER SPECTRUM OF #M WAVE FOR o,? << 1

The determination of the angle-modulated carrier spectrum from, Eq. (8-7)
requires the Fourier transform of eRa (™ , which, in general, is quite difficult
to obtain. For o¢2 << 1, however, it is well known that the spectrum of the
angle modulated wave is similar to that of an amplitude modulated wave with the
same modulating voltage 5,

15 Abramson, (REF. 1, p. 411), Middleton, (REF. 6, p. 617) or Schwartz, (REF. 11, p. 118).
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This can be shown easily by expanding the exponentials of Eq. (8-7),
R = i(i 1 - 2 -(—fﬁ - ' R_4,2_(’—)
V(T)¢" 2 Y 21 1, 1 R¢(T) + 21 t ... ] cos w T

For 0,2 << 1,

A2
R, (Myu ~ IS [l + Rd,(-/)] cos w_ T (8-8)
Therefore
A2 A,2
S, (g = 7 8 (F £6,) +—s,(f) = 5(f +£)
or
Ao2 : AOZ
S, (f)gn = 5 s (fxf) v s, (Fef) (8-9)

Comparing this with Eq. (7-5) gives the expected result that the spectrum
of a narrowband #M carrier is similar to the spectrum of an AM carrier with
the same modulating voltage.

8.3 CONVERTER OUTPUT SPECTRUM FOR ¢M INPUT

As done previously for the AM case in Section 7.2, the results of Section 6.3
can be utilized to obtain the output autocorrelation function and power spectral
density of the converter.

The joint moments of v(t),, are given by the values of Table 6-2, with the
following substitutions,

2a, b (8-10)
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sin 2 3 T
—2'—“1‘)‘— COS w7 (8-11)
n T

2

1 .,
Ry(7) = S A a,b

Utilizing the above substitutions, the converter output autocorrelation
function for a narrowband ¢M carrier input is given by Eq. (6-11). The complete
output spectrum for the converter is given by Eq. (6-13), with S, (f) replaced
by the modulating spectrum of the ¢M wave, S, (f).
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9. CONCLUSIONS

The output power spectral density of a diode frequency converter subjected
to mixed statistical inputs has been derived by an application of the Wiener-
Khintchine Theorem to the autocorrelation function of the diode output current.
The series representation of the diode current is given by Eq. (3-17) and the
complete output autocorrelation function is given by Eq. (4-5). The latter
equation is useful for any input signal for which the statistical moments are
known.

The output autocorrelation function for a signal plus additive noise input,
again expressed in terms of the signal moments, is given by Eq. (5-21). The
output spectrum for a cosine input is given by Eq. (6-10) and is displayed in
Figure 6-2 for the 1N53C diode. The output spectrum for a cosine plus narrow-
band noise input is given by Eq. (6-13), with the output signal-to-noise ratio
given by Eq. (6-16). Sections 7 and 8 indicate the resulting spectra for an
amplitude and an angle modulated signal plus noise input, respectively.

All of the autocorrelation and power spectra functions developed in this
paper are expressed in series form and in terms of the diode conductance con-
stants, This was done to permit a useful analysis of the contributions of each
term and to indicate the significance of the diode constants to the resulting
power spectra. From a display of the spectral contributions of the autocorrela-
tion function, such as Figures (6-1) and (6-2), the terms producing undesired
output noise and the diode terms affecting these terms are evident.

From these results, the optimum diode characteristic for efficient frequency

conversion can be generated and the filtering and power requirements of the
converter determined.
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APPENDIX 1
SPREADING RESISTANCE EFFECT ON CONDUCTANCE CONSTANTS

The current through the variable resistance diode with a spreading resist-
ance of r_ was shown in Section 3.0 to be,

i(t) = Io[e“("'“‘*) - 1] a-1)

where v and R_ are as shown in Figure 3-1.

Re-arranging terms,

1 = (v iRy)
[Io ' 1] € 1-2)
Since,
2 3 4
In(1+x) = x_‘%‘*%"%*... x| < 1

therefore Eq. (I-2) can be expressed as,

- 1 .2 l .3
a(v-iRs) = L ——2—l—+—_1_ -
IO 102 3 103
Dividing by aR_ gives,
v .
(R__i): RI, e —L e
s *8s o 2aRsIo2 .'S(LRSIO3

Re-arranging terms and letting eI, ~ Tar
0

. | ( v ) i (rd + 1) . ( rd ) . 2 + ( r(I ) 3
- v 1 - 1 14 - ... -3
R_ R_ 21,R, 31,2R, (I-3)
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From FEq. (5-4),

s

1(t) - Z gkvk

k=1
Expanding,
i = gyv t g2v2 ¥ g3v3 t
i2 = g lvit2g g, vt (2g1g3 tgyt) v
i3 = gl3v3 ¥ 3g132"4 + 3(312g3 + glg22) vsoF L.

Substituting the above series for the current into Eq. (I-3) and equating like

powers of v gives,
1 Ta
It R a-4)
- i 2 L)
0 = e g 'Y e (argR (-5)
<rd ) Ta Ta
0 = ¢ t1) - 2gig (o) el T, (I-6)
3 \R, 152 \ 2I_ R, 1 3102Rs

From Eq. (I-4),

B 1
gl - Rs + rd (1—7)
From Eq.'s (I-5) and (I-7),
rd
B2 - 3 (1'8)
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From Eq.'s (-6), (I-7), and (I-8),

2 _
) ry 2rdRs

Bs ~ 6102 (rd + RS)S ([—9)

Using the same method of equating like powers in Eq. (I-3), the remaining
conductance constants can be determined as required.
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APPENDIX I
1N53 DIODE CHARACTERISTICS

In this appendix the diode parameters necessary for the frequence converter
analysis will be determined from measurements on a representative microwave
diode. The diode chosen for study was the 1N53C K -band microwave mixer,
produced by Sylvania Electric Products, Inc. It is a point contact silicon diode
in a miniature coaxial type package, and is designed for use as a first detector
in K_-band microwave superheterodyne receivers. The electrical character-
istics, taken from the manufacturers engineering data sheet, are listed in
Figure II-1.

The forward and reverse characteristics of four sample diodes were ob-
tained on a Tektronix Type 575 Transistor-Curve Tracer, and from the four
resulting curves a representative forward characteristic was plotted, This
curve is shown as the solid line of Figure II-2.

Various values of o and R_ were assumed to obtain a 'best fit' curve for

Eq. (I-1). I, was determined by an exact fit of the curve at the operating point
chosen at

v, - 0.25v, I, 0.48 ma

and by utilizing the relation,

I

ea(va_ l-‘:) - l

I, =

Several of the calculated curves are shown in Figure II-2. The curve that
resulted in the best fit around the operating point, to three significant figures,
had the values,

a = 16 vt
R, -~ 25 ohms
I, 0.932 x 1075 amperes
1
r, Ty 6720 ohms
< (L IO
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DYNAMIC CHARACTERISTICS AT 25 C

Min, Max,
Conversion Loss, L_, indb ..., —_— 6.5
Noise Ration, N ..., —_— 2.0
IF Impedance, Z;g, in ohms ... 400 800
RI Impedance, Z ., as VSWR
CIRTIR:111 10 (I — 1.6
OIRP I & (1D C I — 2.5
@ 36,950 MC  ...ccovvmrereereeereeeeerenee e —_ 2.5
Overall Noise Figure, NF, indb ... — 9.0
TEST CONDITIONS:
For L_: f = 34,860 Mc For Z . f = 34,860 Mc
P=1,0 mw P/1 =0.5 madec
R, = 100 ohms
Z_ 500 ohms For Z P/T = 0.5 ma de
R, = 100 ohms
For N, : f =9,375 Mc
P/I =0.5 ma dc (min) For NF : NF =L_(N;p * N, - 1)
R, =100 ohms Nip =1.5db

R, = 300 ohms

Figure IT-1. Electrical Characteristics of IN53C Diode
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Current, 1, in milliamperes

Experimental Curve

______ = - 40 (1/volts)
———ee— = - 16
—==-——=~-x 16, R:- 50 (ohms)
——————— == 16, R-30

— .- x = 16, R= 20

———-—x = 16, R 25

0.5

Voltage, V, in volts

Figure II-2. IN53C Current-voltage Characteristics
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Since r, >> R_, negligible error will be introduced by neglecting R, and
utilizing Eq. (3-5) to determine ¢, g,» etc., instead of Eq.'s (I-7), (I-8), and
(I-9). The first six conductance constants for the 1N53C diode, along with the
other important constants for the diode, are summarized in Figure II-3,

The 'A' coefficients for the diode, and their squares, are shown in Figure

II-4. They were determined from Eq. (3-16), with the local oscillator voltage
amplitude, E,, set equal to 0.25 volts,

EXPONENTIAL REPRESENTATION

P, [Ca(v-i&J]

I, = 0.932x 1075a
a = 16v7!
R, - 250

k=0

g - O

g, - 1.48 x 1074
g, - 1.18 x 1073
g - 6.16 x 1073
g, - 2.46 x 1072
gs - 8.60 x 1072
g -~ 2.30 x 107!

Figure I1-3. Experimentally Determined Constants for the IN53C Diode
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Ay, = 0.0369 ma A%, - 0.00136

Ay = 0.109 ma A%, = 0.0119

Ay, = 0.0369 ma A%, =  0.00136
-8 Ay, = 0.012 ma A%, = 0.000144
- Ay = 0.436 ma/v A2, = 0.19

Ay, = 5.79 ma/v?2 A%, = 33.5

A, = 19.6 ma/v3 A230 = 384.0

A, = L7484 ma/v Az, - 3.03

A, = 0.578 ma/v A2, - 0.3

A, = 0.192 ma/v A%, = 0.0369

A, = 116 ma/v? A%, = 135.0

A, = 4.62  ma/v? AZ, = 21.3

A23 = 1.68 ma/v2 1\2,3 = 2.82

A, = 78.6 ma/v3 A%, = 6180

A, = 2.9 ma/v3 A232 = 723

A,, = 8.9 ma/v? Az, = 79.2

ma
ma
ma
ma
ma 2//V 2
ma?/v*
ma2/v®
ma</
ma?/v2
ma?/v?
ma2/v*
ma2/v?
ma2/v*
ma2/v®
ma2/v®

ma2/v®

Figure II-4. ‘A’ Coefficients for the INS3C Diode, with E0 = 0.25 Volts
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